
Search
for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks > Java technology

Integrating Struts, Tiles, and JavaServer Faces

Contents:
A look at JSF

Why integrate the trinity?

Integrate Struts and JSF
with Struts-Faces

Migrating Struts
applications to JSF

Challenges

The changes so far

Resources

About the authors

Rate this article

Related content:
Struts, an open-source
MVC implementation

Struts and Tiles aid
component-based
development

UI development with
JavaServer Faces

Subscribe to the
developerWorks newsletter

developerWorks Toolbox
subscription

Also in the Java zone:
Tutorials

Tools and products

Code and components

Articles

Bring the power, flexibility, and manageability of the three technologies together

Level: Advanced

Srikanth Shenoy (srikanth@srikanth.org), J2EE Consultant, Objectseek Inc.
Nithin Mallya (nithin@mallya.org), J2EE Consultant, Objectseek Inc.

September 23, 2003

Would you like the front-end power of JavaServer Faces (JSF), the
content-formatting strengths of Tiles, and the flexibility of the Struts
controller tier all wrapped up in your J2EE Web application? Enterprise Java
experts Srikanth Shenoy and Nithin Mallya show you how to integrate the
features of all three. This article demonstrates how to customize the classes in
the Struts-Faces integration library to make them work with Tiles and JSF,
explains the rationale behind doing this, and details how to use the new set of
classes with a working example.

By using Struts, Tiles, and JavaServer Faces (JSF) together, developers can ensure a
robust, well-presented Web application that is easy to manage and reuse.

The Struts framework has been around for quite some time and has become the de
facto standard that developers turn to when developing a J2EE Web application. The
Tiles framework, which came soon after Struts, established its niche by offering
developers the ability to assemble presentation pages using component parts. JSF,
the newest kid on the Web-application-framework block, provides mechanisms for
validating user input and handling user events; most importantly, it is a
protocol-independent way of rendering user interface components. (For a quick look
at these technologies, see the sidebar, "The major players.")

Although some of the functionalities in Struts and JSF overlap, they are
complementary in other ways. The combination of these three technologies can
provide an efficient way to develop a Web application, organize its presentation, and
render custom user interface (UI) components independent of protocol.

To run the sample code from this article, you will need Struts 1.1, Tiles, JavaServer
Faces Reference Implementation (JSF-RI) Early Access Release 4.0, and
Struts-Faces 0.4. Struts and Tiles come bundled in the Struts 1.1 release from the
Jakarta project. The Struts-Faces integration library can also be downloaded from
the Jakarta project. The JSF-RI is part of the Web Services Developer Pack from
Sun. (Links to these downloads and the sample code are available in Resources.)

And now, back to details of integrating the three technologies. First the bad news: as
of the publication of this article, the three technologies do not interoperate out of the
box. And the good news: in this article, we demonstrate how to integrate Struts, Tiles, and JSF. We assume that
you already know Struts and Tiles. Some familiarity with JSF is helpful (see Resources for a link to a recent JSF

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/j-integrate.zip
javascript:void newWindow()
http://www-106.ibm.com/developerworks/java/library/j-struts/
http://www-106.ibm.com/developerworks/java/library/j-struts/
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jsf-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jsf-i.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/views/java/code.jsp
http://www-106.ibm.com/developerworks/views/java/articles.jsp
mailto:srikanth@srikanth.org
mailto:nithin@mallya.org

tutorial on developerWorks), but is not necessary to understand this article.

A look at JSF
JSF applications are normal J2EE Web applications using the JSF framework, a framework that provides a rich
GUI component model that offers insight into how a real GUI framework should be. You might have heard people
say that, although a certain technology is good, its look and feel still needs to mature. Well, the days of plain
vanilla pages with HTML components are behind us and the days of having a superior GUI look and feel are here
to stay if JSF has anything to do with it. How, you ask? Tree components, menu components, and graphs are some
of the already existing UI components that JSF has to offer. Furthermore, JSF encourages the creation of custom
components by providing an easy to use API.

Note: The UI components mentioned are part of the samples provided by Sun. As in any specification, the actual
implementation is left to the various vendors.

In traditional Web applications that use the Model-View-Controller (MVC) pattern, the GUI components are
represented by custom tags which handle both presentation and business logic. This leads to the problem of having
to "code to a client device," which can involve duplication of code. Not so with JSF.

JSF architecturally separates the presentation logic (the "what") from the UI component's business logic (the
"why" and "how"). By using JSF tags in your JSP pages, you can associate a renderer and a UI component
together. A single UI component can be rendered in different ways by using different renderers. The UI
component-specific code runs on the server and responds to events that are generated by user actions.

JSF-RI provides a render kit that comes with a custom tag library to render HTML from UI components. It also
provides the ability to customize the look and feel of these components as desired. If specialized components are
required, you can construct custom tags for a particular client device and associate it with a UI component and a
custom renderer. For different devices, all you need to specify are different renderers.

JSF and the UI component
You may have created Java GUI applications using the Java AWT or Swing API, so you would be familiar with
JSF's UIComponent (which is much like an AWT or a Swing component). It stores the tree of its child
components (if they exist) and generates standard events for actions that occur on the client side, such as clicking a
button to submit a form. These events are cached in the FacesContext. You can associate handlers for each of
these events using custom tags. For example, you have a custom ActionListener to handle user clicks or
form submissions.

The JSF UIComponent, Renderer, and the tag always go hand in hand. All JSF custom tags are created by
subclassing UIComponentTag. The doStart and doEnd methods are already implemented in the
UIComponentTag class. You only have to provide additional functionality in these tag classes.

Figure 1 illustrates the relationship between the custom tag, UI component, and the renderer. The client browser
accesses a JSP page with JSF tags (jsf:myTag) for the UI component (MyComponent). The UI component
runs on the server and is rendered back to the client as HTML using the appropriate renderer (MyRenderer).
The JSP page expresses the user interface components with custom tags in JSF-RI rather than coding them in
HTML.

For instance, Figure 1 shows the usage of the h:panel:group tag. This tag is used to group a set of
components under one parent. When used in combination with other panel tags such as panel_grid and
panel_data, it generates mark-up for columns in HTML tables at run time. The JSF-RI-provided html_basic
tag library is used to represent HTML components such as text fields, buttons, and the like.

Figure 1. Rendering a JSF page

The JSF life cycle
The JSF life cycle consists of six phases; an incoming request might go through all or none of the phases
depending on the type of request, validation and conversion errors that occur in the life cycle, and the type of
response. Faces requests originating from JSP pages are handled by the JSF framework and a faces or non-faces
response is returned.

A faces request occurs when a JSF form is submitted or when a user clicks a link that points to a page with the
prefix /faces in the URL. All faces requests are handled by a FacesServlet -- the controller servlet in JSF.

A request sent to a servlet or a JSP page with no JSF components is called a non-faces request. When the resulting
page has JSF tags in it, it is called a faces response; with no JSF tags, it is a non-faces response.

There are six phases in the JSF life cycle:

Reconstitute request tree●

Apply request values●

Process validations●

Update model values●

Invoke application●

Render response●

According to the JSF specification, each phase represents a logical concept in the Request processing life cycle.
However in the JSF-RI, these phases are represented by actual classes with corresponding names. The following
section describes how each phase handles request processing and response generation. You will first see the
phases involved in handling a faces request and then see the phases involved in handling a faces response.

Handling faces requests
To understand JSF request processing, look at FlightSearch.jsp, a simple JSF form in Listing 1. This is essentially
how a JSF page looks. The JSF form has input text fields for from and to cities, departure and return dates, and
buttons for submitting and resetting the form. (We'll examine what each tag in Listing 1 means shortly.) For now,
assume that this form submission creates a faces request.

The request is received by the FacesServlet and goes through the various phases before a response is
rendered back to the client. Figure 2 shows how a JSF request is processed. Let's see how this works.

1. Receive the request
The FacesServlet receives the request and gets an instance of the FacesContext from the
FacesContextFactory.

2. Delegate life cycle processing
FacesServlet delegates the life cycle processing to the Lifecycle interface by invoking the execute

method on the Lifecycle implementation passing in the faces context.

3. Lifecycle executes each phase
The Lifecycle implementation executes each of the phases starting with the Reconstitute Component Tree
phase.

4. Component tree created
In the Reconstitute Component Tree phase, a component tree is created with the components in travelForm.
This tree has the UIForm as the root and the various text fields and buttons as its children.

The fromCity field has a validation rule that specifies that it cannot be empty, as shown by the
validate_required tag. This tag links the fromCity text field with a JSF Validator.

JSF has several built-in validators. The corresponding Validator is initialized in this phase. This component
tree is cached in the FacesContext and the context will be used in later phases to access the tree and invoke
any event handlers. Also the UIForm state is saved automatically. So, when this page is refreshed, the form's
original contents are displayed.

5. Extracting values from the tree
In the Apply Request Values phase, the JSF implementation traverses the component tree and extracts values from
the request using the decode method and sets them locally for each of the components. If there are any errors
during this process, they are queued on the FacesContext and will be displayed to the user in the Render
Response phase.

Also, any events that were created as a result of user actions, such as clicking on the reset button, that are queued
during this phase are broadcast to registered listeners. Clicking the reset button will set the values in the text fields
back to their original values.

6. Validations are processed
In the Process Validations phase, any validations associated with each component are performed against the local
values set in the Apply Request Values phase. This happens when the JSF implementation invokes the
validate method on each registered validator.

If any of the validations fail, then the life cycle advances to the Render Response phase where the same page is
rendered, but with the error messages. Here also, any events that are queued during this phase are broadcast to
registered listeners.

The JSF implementation processes the validator on the source field. If the data is invalid, then control passes to the
Render Response phase where FlightSearch.jsp is rendered again with validation errors displayed for the
associated component. By declaring output_errors in the JSP page, all the errors in the page will be
displayed at the bottom of the page.

7. Setting the model object values
In the Update Model Values phase, after all the validations are processed successfully, the JSF implementation
sets the model object values with the valid ones by invoking the updateModel method on each component. If
any errors occur while trying to convert the local data to the types specified by the model object properties, the life
cycle advances to the Render Response phase where the errors are displayed. The values from the form field
properties are populated into the model object's attribute values.

8. ActionListener can be invoked
You can associate an ActionListener with a user action such as clicking the submit button, as shown in
Listing 1. In the Invoke Application phase, the processAction method is invoked on
FlightSearchActionListener. Upon invocation, the processAction method would, in a real-world
scenario, search the database for flights satisfying the criteria and retrieve the outcome from a component's action
attribute.

In the example Web applications provided with this article, we have used static data to represent the list of flights.
This method also sends the retrieved action attribute to the NavigationHandler implementation. The
NavigationHandler looks up the faces-config.xml file -- the default application configuration file for JSF --

to determine the next page to be directed to based on this outcome.

9. Rendering the response
In the Render Response phase, the page obtained from the lookup in the faces configuration file, FlightList.jsp, is
displayed if there are no errors in the faces context. If control came to this phase due to errors in any previous
phases, then FlightSearch.jsp is redisplayed with the error messages.

Figure 2. Processing a JSF request
Click here to view the figure.

Listing 1. FlightSearch.jsp, a simple JSF form

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:use_faces>
 <h:form id="flightForm" formName="flightForm" >
 <h:input_text id="fromCity" valueRef="FlightSearchBean.fromCity">
 <f:validate_required/>
 <h:input_text/>

 <h:input_text id="toCity" valueRef="FlightSearchBean.toCity">
 <h:input_text id="departureDate"
 valueRef="FlightSearchBean.departureDate">
 <h:input_text id="arrivalDate"
 valueRef="FlightSearchBean.arrivalDate">

 <h:command_button id="submit" action="success"
 label="Submit" commandName="submit" >
 <f:action_listener
 type="foo.bar.FlightSearchActionListener"/>
 </h:command_button>
 <h:command_button id="reset" action="reset" label="Reset"
 commandName="reset" />

 <h:output_errors/>
 </h:form>
</f:use_faces>

Two tag libraries from JSF-RI are used in this code. The html_basic tag library defines tags for commonly used
HTML components and the jsf-core tag library contains tags used to register listeners and validators. Other tags:

The f:use_faces tag indicates to the JSF implementation that the tags following are faces tags.●

The f:validate_required tag indicates that the field to which it is attached (the fromCity field in
FlightSearchBean) should have a value before the form can be submitted.

●

The h:form and h:input_text tags represent an HTML form called flightSearchForm and the
various text fields respectively.

●

The h:command_button tag is used to represent Submit and Reset buttons.●

Finally, the h:output_errors tag is similar to the Struts html:errors tag and is used to display any
errors that occur during validation of the form fields.

●

A JavaBean called FlightSearchBean represents the model that is updated during the Updated Model Values phase
from the UIComponent data. Typically a JavaBean is declared in the JSP page with the jsp:useBean tag.
You might notice that this has not been done in FlightSearch.jsp. This is because you can use a feature of JSF
called Managed Beans whereby you declare all the JavaBeans components being used by the JSP pages in the
faces configuration file. At startup, the servlet container initializes these JavaBeans components. The entry for
FlightSearchBean in the faces-config.xml file is shown in Listing 2:

Listing 2. faces-config.xml entry for TravelInfoBean

<managed-bean>
 <managed-bean-name>FlightSearchBean</managed-bean-name>
 <managed-bean-class>
 foo.bar.FlightSearchBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Now let's look at the phases as they handle a response.

Rendering faces response
A faces response is generated by a Faces application when the resulting JSP page contains JSF tags. This response
could be the result of a faces or non-faces request on a JSF application.

In our example, the rendering of the page in Listing 1 is a faces response. You might be familiar with the
doStartTag() and doEndTag() methods on the Tag interface. In JSF and Struts-Faces, each tag extends
from UIComponentTag. UIComponentTag implements the doStartTag() and doEndTag() methods.

It also has two abstract methods, getComponentType() and getRendererType(). By implementing
these two methods in the concrete tag classes, you can specify the type of the component and the renderer,
respectively.

Consider a simple JSF form with a text field. The following sequence of steps is executed when the JSF form is
rendered.

1. Invoking the doStartTag() method
The Servlet container invokes the doStartTag() method on FormTag.

2. Getting the UIComponent
The FormTag gets its UIComponent from the getComponentType() method. UIComponentTag (parent
of FormTag) uses getComponentType() to look up the class name for this component from the
faces-config.xml file and creates an instance of the UIComponent(FormComponent).

3. Getting the renderer
Next, FormTag gets its Renderer from the getRendererType method. As in the component type, the
renderer name is looked up in the faces-config.xml file.

4. Encoding methods are invoked
After the FormComponent and FormRenderer have been created, the encodeBegin() method is invoked
on the FormComponent. For each tag, the rendering begins with encodeBegin() and ends with
encodeEnd(). The encodeBegin() methods are invoked in the order of nesting.

5. Ending tags and rendering HTML
The servlet container invokes the doEndTag() method on the tags. The encodeEnd() methods are invoked in
the reverse order of nesting on each component. In the end, the Form and all nested components are rendered as
HTML. At this point, the generation of HTML is complete and the HTML equivalent of the JSP is rendered.

Figure 3 shows the sequence of events that makes up the generation of a faces response.

Figure 3. Rendering a faces response
Click here to view the figure.

Why integrate the trinity?
As the JSP and the related specifications mature, new standards like JSF and the JSP Standard Tag Library (or
JSTL, which uses simple tags to encapsulate the core functionality common to many JSP applications) are
emerging. Following are some of the advantages to using the new technologies as an integrated whole:

Cleaner separation of behaviors and presentation. With the separation of tag, renderer, and component,
the roles of page authors and application developers in the development cycle become better defined.

●

Changing the presentation for a component does not have an avalanche effect. Now you can easily just
change the renderer. In the traditional MVC model, since this separation did not exist, any change in tags
needed changes to the business logic as well. Not any more.

●

Renderer independence. Or restated, protocol independence by reusing component logic for multiple
presentation devices with multiple renderers. The ability to use different renderers eliminates the need to
code the entire presentation tier for specific devices.

●

A standard for assembling and reusing custom components. JSF thinks beyond "forms and fields" and
provides a rich component model for rendering custom GUI components. Using JSF you can customize the
way each component looks and behaves in a page. Developers also gain the ability to create their own GUI
components (like menus and trees), which can easily be included in any JSP page with simple custom tags.
Just like the Java front-end GUI components provided by AWT and Swing, we can have custom
components for our Web pages that use their own event handlers and have customizable appearances. This
is GUI nirvana for the Web tier!

●

Struts is a framework that already possesses a large customer base. Many IT departments have recognized the
value of this MVC framework and have been using it for quite a while. JSF doesn't possess the equivalent of
Struts's powerful controller architecture, as well as its standardized ActionForm and Actions (with their
declarative capabilities). When you integrate Tiles into the mix, you give yourself the ability to reuse and change
corporate layouts in a seamless manner.

The challenges of migrating JSF-enabled Struts applications are two-fold. First, Struts tags are not JSF-compliant.
In other words, they do not extend the UIComponentTag as mandated by the JSF specification, therefore, JSF
cannot interpret and associate UIComponent and Renderers with them.

Second, there is no link between the FacesServlet and Struts RequestProcessor. In a Struts application,
the RequestProcessor manages the show with the callback methods into ActionForm and Actions
classes. Getters and setters for ActionForm properties and validate() are the callback methods in the
ActionForm. For Action, execute() is the callback method. Unless the RequestProcessor gets
invoked, the callback methods in Struts ActionForm and Actions classes do not get a chance to invoke the
business logic.

Integrate Struts and JSF with Struts-Faces
At this point you might be wondering if there is any software that can help integrate Struts with JSF, or whether
you'll have to write the integration software yourself.

The good news is that the software already exists. Struts-Faces is an early access release of the Struts JSF
integration library. This library was created by Craig McClanahan, the creator of Struts, and makes it easy to
migrate your existing Struts applications to JSF (keeping the value of your existing Struts investment).
Struts-Faces also strives for a clean integration with JSF so that JSF can be used on the front end while the back
end will still have the familiar Struts components.

Figure 4 illustrates the relationships among Struts-Faces and JSF classes. The classes in blue belong to
Struts-Faces.

Figure 4. Struts-Faces class diagram
Click here to view the figure.

The following are the major components of Struts-Faces:

The FacesRequestProcessor class, which handles all faces requests. This class subclasses the regular
Struts RequestProcessor and handles the faces requests. Non-faces requests are delegated to its parent,
RequestProcessor.

●

The ActionListenerImpl class, which handles ActionEvents such as submitting a form or
clicking on a link. This class is used instead of the default ActionListener implementation provided by
JSF-RI. Whenever an ActionEvent is generated in a faces request, the processAction() method on
ActionListenerImpl is invoked and ActionEvents are forwarded to the
FacesRequestProcessor. This is interesting because RequestProcessor is normally invoked
only by the Struts ActionServlet to process HTTP requests.

●

The FormComponent class, which extends from the JSF Form Component but is invoked within the
Struts life cycle.

●

A renderer and tag for the FormComponent.●

Tags and renderers for data that is rendered for output only, that is, where there is no need for a separate
component. For instance, ErrorsTag and ErrorsRenderer are used to display the form errors in
HTML.

●

An implementation of the ServletContextListener called LifeCycleListener, which is used
to register the appropriate RequestProcessor during initialization.

●

The faces-config.xml file. This is already bundled in the struts-faces.jar file.●

Listing 3 shows FlightSearch.jsp using the Struts-Faces tags. It is similar to the JSF example demonstrated in
Listing 1. The differences are highlighted with boldface. In it, you will find that a new tag library, tags-faces, is
added. This tag library definition declares the tags used by the Struts-Faces API.

Listing 3. FlightSearch.jsp using Struts-Faces tags

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://jakarta.apache.org/struts/tags-faces"
 prefix="s" %>

<f:use_faces>
 <s:form action="/listFlights">
 <h:input_text id="fromCity" valueRef="FlightSearchForm.fromCity"/>

 <h:input_text id="toCity" valueRef="FlightSearchForm.toCity"/>
 <h:input_text id="departureDate"
 valueRef="FlightSearchForm.departureDate">
 <h:input_text id="arrivalDate"
 valueRef="FlightSearchForm.arrivalDate">

 <h:command_button id="submit" action="success" label="Submit"
 commandName="submit" />
 <h:command_button id="reset" action="reset" label="Reset"

 commandName="reset" />

 <s:errors/>
 </s:form>
</f:use_faces>

The s:form tag is used to create the HTML form. The form action attribute is /listFlights instead of the form
name, flightForm as specified in Listing 1. In JSF, the form name is just a name assigned to the UIForm and
nothing more.

FlightSearchBean is the model for the JSF Form and gets the values in Update Model Values phase. In
Struts however, the form action points to the ActionMapping in the Struts Configuration File,
struts-config.xml. To understand how this works you have to also take a look at the struts-config.xml file shown in
Listing 4.

You will see that the ActionMapping for /listFlights indicates that the ActionForm for this URI-path is
foo.bar.FlightSearchForm and the Action class is foo.bar.FlightSearchAction. In other
words, the ActionForm (FlightSearchForm) itself is the model for the HTML form in Struts-Faces and its
action indirectly points to this model. (You can see this in Listing 3, where the text field tags point to the
FlightSearchForm. In a normal Struts application this would have been <html:text
property="fromCity"/>.)

Listing 4. Declaring the Action in struts-config.xml

<form-bean name="FlightSearchForm"
 type="foo.bar.FlightSearchForm"/>

<!-- ========== Action Mapping Definition ========================= -->
<action-mappings>

<!-- List Flights action -->
 <action path="/listFlights"
 type="foo.bar.FlightSearchAction"
 name="FlightSearchForm"
 scope="request"
 input="/faces/FlightSearch.jsp">
 <forward name="success" path="/faces/FlightList.jsp"/>
 </action>

</action-mappings>

Five steps to integrate Struts and
Tiles
The following five steps will get
Struts 1.1 and Tiles working
together:

1. Create a JSP to represent your site
layout. This is your master JSP with
placeholders for header, body, and
footers. Each of these are added to
the main JSP page by using Tiles
tags.

2. Create a Tiles definition file and

You will notice that the familiar .do is missing in the action attribute. This
is because the Struts-Faces uses the form action itself as the form name
(which should also match the ActionForm name in Struts configuration
file).

Also notice that we have not used the JSF validation tag here. This is
because in Struts, the validation happens in validate() method on the
ActionForm class potentially by using the Commons-Validator. The
s:errors tag is similar to the Struts errors tag and is used to display
error messages that occur during validation.

Another thing to notice is that no ActionListener is explicitly
associated with the Submit button. This is because the
ActionListener is already provided in Struts-Faces and always
forwards the faces requests with ActionEvents to the

define what JSP page has to be
included in each of the placeholders
for each aggregate page. Identify
every aggregate page definition with
a unique name.

3. Change the global and local
forwards in the struts-config.xml file
to use the unique names from the
previous step instead of the aliases.

4. Use TilesPlugIn to load the
Tiles definition file during startup.
Add the TilesPlugIn entry into
the struts-config.xml file.

5. Add the
TilesRequestProcessor entry
into the struts-config.xml file. This is
the default request processor for
Tiles-enabled Struts application.

FacesRequestProcessor, from which the requests are dispatched to
appropriate Action classes based on the struts-config.xml file.

Migrating Struts applications to JSF
In order to integrate the Struts Web application with JSF, follow these
steps:

Add the struts-faces.jar file along with the JSF-specific JARs
(jsf-api.jar, jsf-ri.jar) into the WEB-INF/lib directory of the Web
application.

●

Add the JSTL-specific JARs (jstl.jar, standard.jar) into the
WEB-INF/lib folder if you plan to use JSF and JSTL. This step is
needed only if you are deploying to the regular Tomcat. JWSDP
already provides these JARs.

●

Modify the Web application deployment descriptor
(/WEB-INF/web.xml) to have an entry for the Faces Servlet
definition as shown in Listing 5.

●

Modify the JSP pages to use the JSF and Struts-Faces tags instead
of the Struts tags. Specifically replace the html, base, form, and errors tags with Struts-Faces
equivalents. Replace the text, textarea, and radio tags with equivalent JSF tags. Struts-Faces does
not have separate tags for these. Although not a requirement, you might also want to consider replacing the
Struts Logic tags with equivalent JSTL tags.

●

For each JSP that uses JSF tags, modify the struts-config.xml file to include the prefix /faces in the
global-forwards and the local-forwards in the Action Mappings pointing to that JSP.

●

If the Web application uses any custom components that you've created, you will need to register them with
the JSF implementation's default RenderKit. You can do this by creating a faces-config.xml file in the
WEB-INF folder and adding entries for each component and renderer. However, remember that the
faces-config.xml file is already bundled in the struts-faces.jar file. You have to extract it from the
struts-faces.jar file, add your contents, and put it under WEB-INF folder.

●

Listing 5. Declaring the FacesServlet in web.xml

<!-- JavaServer Faces Servlet Configuration -->
<servlet>
<servlet-name>faces</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<!-- JavaServer Faces Servlet Mapping -->
<servlet-mapping>
 <servlet-name>faces</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>

Challenges to integrating Struts-Faces and Tiles
The Struts-Faces library provides an efficient bridge between Struts and JSF, making rich presentation layers a
reality in J2EE Web applications. You can make the presentation layers even richer by adding Tiles to the
combination, so that you not only get the benefit of the Struts and JSF combination, but you can also efficiently

reuse the various JSP pages because they will be made up of component parts or tiles that can be added or
removed as required.

This article has already demonstrated the integration of Struts and JSF, so you would think that adding Tiles to the
mix would be a breeze, right?

Unfortunately, JSF is still in the early stages and hasn't been posted in a final release. With this in mind, the
Struts-Faces integration software is being developed iteratively to accommodate the various features of JSF and
does not yet support Tiles.

Struts and Tiles can work together seamlessly, but you will encounter roadblocks on the integration journey. In the
following subsections, you will find a summary of some commonly encountered issues you may face when using
the Struts-Faces integration library in conjunction with Tiles. For each of these problems, we detail a solution by
modifying the Struts-Faces classes. We will explain the solutions using the Flight Search example.

Listing 6 illustrates the layout for Flight Search page. Notice that we are calling it Flight Search page and not
FlightSearch.jsp. This is because the FlightSearch JSP is the body of the aggregate page the user sees on the
foobar travel Web site.

For now, we will retain the actual FlightSearch.jsp as is. We will change it as we go along. For your part, you will
also have to create a Tiles definitions file with a definition for Flight Search page. Listing 7 (immediately
following Listing 6) demonstrates an entry for Flight Search Page in the Tiles definition file. Notice the reuse of
the master layout template with the extends attribute.

The individual potential challenges will follow Listings 6 and 7.

Listing 6. Tiles layout for the Flight Search example

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>
<%@ taglib uri="http://jakarta.apache.org/struts/tags-faces"prefix="s" %>

<!-- Layout component parameters: header, menu, body, footer -->
<s:html>
<head>
 <title> <tiles:getAsString name="title"/></title>
 <s:base/>
</head>
<body>
 <TABLE border="0" width="100%" cellspacing="5">
 <tr>
 <td><tiles:insert attribute="header"/></td>
 </tr>

 <tr>
 <td><tiles:insert attribute="body"/></td>
 </tr>

 <tr><td><hr></td></tr>

 <tr>
 <td><tiles:insert attribute="footer" /></td>
 </tr>
 </TABLE>
</body>
</s:html>

Listing 7. Tiles definition for Flight Search Page.

<!-- Master Layout definition -->
<definition name="foobar.master-layout"
 path="/faces/layout/MasterLayout.jsp">
 <put name="title" value="Welcome to Foo Bar Travels" />
 <put name="header" value="/faces/common/header.jsp" />
 <put name="footer" value="/faces/common/footer.jsp" />
 <put name="body" value="" />
</definition>

 <!-- Definition for Flight Search Page -->
<definition name="/foobar.flight-search"
 extends="foobar.master-layout">
 <put name="body" value="/faces/FlightSearch.jsp" />
</definition>

Response has already been committed
This is the first problem you will see as soon as you try to access the Flight Search Form. Carefully look at the
stack trace. You will see that the problem lies in the class
com.sun.faces.lifecycle.ViewHandlerImpl. This is a JSF-RI class implementing the
ViewHandler interface.

Figure 2 demonstrated the role played by ViewHandler. This is the class that forwards the request to the next
page. When forwarding the request, it does not check the status of the response before forwarding it -- this
happens only when you use Tiles, because Tiles internally includes the JSP pages in the response and JSF-RI
commits the response after the first forward and then tries to forward again to the next Tiles include JSP.

To fix this problem, you will have to create a custom ViewHandler implementation that will check the status of
the response to determine whether it has been committed. If the response has not been committed, then the request
is forwarded to the next page; otherwise, the request is included and the appropriate JSP is displayed. We will
create a class called STFViewHandlerImpl that implements the ViewHandler interface and implements the
required method renderView(). Listing 8 shows the renderView() method in STFViewHandlerImpl:

Listing 8. renderView() method in STFViewHandlerImpl

RequestDispatcher rd = null;
Tree tree = context.getTree();
String requestURI = context.getTree().getTreeId();
rd = request.getRequestDispatcher(requestURI);

/** If the response is committed, include the resource **/
if(!response.isCommitted()) {
 rd.forward(request, context.getServletResponse());
}
else {
 rd.include(request, context.getServletResponse());
}

Now that you have implemented your own ViewHandler, how do you notify the JSF-RI to use your
ViewHandler instead of the default implementation? To answer this question, you have to understand the
workings of FacesServlet.

During the Faces initialization process, the FacesServlet consults the LifecycleFactory implementation
to return an implementation of Lifecycle class, as shown in Listing 9:

Listing 9. Faces initialization in FacesServlet

//Get the LifecycleFactory from the Factory Finder
LifecycleFactory factory = (LifecycleFactory)
 FactoryFinder.getFactory("javax.faces.lifecycle.LifecycleFactory");

//Get the context param from web.xml
String lifecycleID =
getServletContext().getInitParameter("javax.faces.lifecycle.LIFECYCLE_ID");

//Get the Lifecycle Implementation
Lifecycle lifecycle = factory.getLifecycle(lifeCycleID);

The Lifecycle implementation object holds the ViewHandler to be used during the Render Response phase.
You can make your own ViewHandler implementation to be the default by calling the setViewHandler
method on the Lifecycle implementation.

Now the question becomes how do you get the default Lifecycle implementation? The answer is that you don't
need to do this. You just create a new implementation and register it with the LifecycleFactory with a
unique ID, as shown in Listing 10:

Listing 10. Registering the custom ViewHandler and Lifecycle

//Get the LifecycleFactory from the Factory Finder
LifecycleFactory factory = (LifecycleFactory)
 FactoryFinder.getFactory("javax.faces.lifecycle.LifecycleFactory");

//Create a new instance of Lifecycle implementation -
//com.sun.faces.lifecycle.LifecycleImpl
//According to the documentation, factory.getLifecycle("STFLifecycle")
//should work, but JSF-RI has a defect.
//Hence this workaround of creating a RI class explicitly.
LifecycleImpl stfLifecycleImpl = new LifecycleImpl();

//Create a new instance of our STFViewHandler and set it on the Lifecycle
stfLifecycleImpl.setViewHandler(new STFViewHandlerImpl());

//Register the new lifecycle with the factory with a unique
//name "STFLifecycle"
factory.addLifecycle("STFLifecycle", stfLifecycleImpl);

You can see that the lifecycleId is hardcoded as STFLifecycle. Actually this is not the case. It becomes
clear when you re-examine Listing 9. The FacesServlet gets the lifecycle ID from the context parameter
declared in the web.xml file with the name javax.faces.lifecycle.LIFECYCLE_ID as follows:

 <context-param>
 <param-name>javax.faces.lifecycle.LIFECYCLE_ID</param-name>
 <param-value>STFLifecycle</param-value>
 </context-param>

Because the FacesServlet decides on the Lifecycle implementation class during its initialization, the code
shown in Listing 10 should execute before the FacesServlet is initialized. You can do this by creating another
servlet and initializing it before the FacesServlet.

But a smarter way to do this is by implementing a ServletContextListener interface. This class declares
two methods, contextInitialized() and contextDestroyed(), which are called when the Web
application is created and just before the Web application is destroyed, respectively. The code in Listing 10 is thus
executed in the contextInitialized() method and the custom ViewHandler is already registered with
the Lifecycle identified by the name STFLifecycle and is available to the FacesServlet. The
ServletContextListener class itself is declared in the web.xml file as follows:

<listener>
 <listener-class>foo.bar.stf.application.STFContextListener
 </listener-class>
</listener>

This is not the only approach to registering a Lifecycle with custom ViewHandler. In fact the
FactoryFinder implements its own discovery algorithm to discover the Factory objects, including the
LifecycleFactory. These mechanisms include looking for the factory implementation class name in system
properties, faces.properties file, or 1.3 Services discovery mechanism
(META-INF/services/{factory-class-name}), in that order. However, the mechanism we've just
discussed is the easiest and the most non-intrusive one.

404 Resource Not Found
After the committed response problem is fixed, click on any Tiles-specific link or enter a URL that would render a
Faces response. In this case, you can enter the URL to display the FlightSearchForm.

Upon doing so, you get a foobar.flight-search - 404 Resource Not Found error. foobar.flight-search is
the name of Tiles definition for Flight Search page. FacesRequestProcessor does not have the capability of
processing Tiles requests (because it extends RequestProcessor instead of TilesRequestProcessor)
and therefore, ends in an error.

To fix this problem, we will create a new request processor called STFRequestProcessor (stands for
Struts-Tiles-Faces Request Processor). For now we will copy all the code from FacesRequestProcessor
into the new class. The only difference is that STFRequestProcessor subclasses
TilesRequestProcessor instead of subclassing the regular RequestProcessor. This new
RequestProcessor can handle Tiles requests. Listing 11 details the STFRequestProcessor:

Listing 11. STFRequestProcessor.java

public class STFRequestProcessor extends TilesRequestProcessor
{

 protected void doForward(String uri, HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 //copy code from FacesRequestProcessor
 }

 protected void doInclude(String uri, HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 //copy code from FacesRequestProcessor

 }

 protected String processPath(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException
 {
 //copy code from FacesRequestProcessor
 }

 protected String processPopulate(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException
 {
 //copy code from FacesRequestProcessor
 }

 private void selectTree(FacesContext context, String uri)
 {
 //copy code from FacesRequestProcessor
 }

}

As you know, the RequestProcessor for Struts framework is specified in the struts-config.xml file.
STFRequestProcessor becomes the processor when the following entry is added into the struts-config.xml
file:

<controller processorClass="foobar.stf.application.STFRequestProcessor" />

Form submission displays the same form in return
Thanks to STFRequestProcessor, at this point you can navigate and see the Flight Search page. However, as
soon as you submit the Flight Search form, you get the same form in return, but without the header and the footer!
And there are no validation errors. In fact, there is no validation at all!

To get a hint of what is going on, go back to the Flight Search page and view the HTML source from the browser.
You will see an entry like this:

<form name="FlightSearchForm" method="post"
 action="/flightapp/faces/FlightSearch.jsp">

Notice that the form action is pointing to the JSP page instead of a .do. Ah ha! There's the problem! This is not a
new problem introduced when using Tiles with Struts-Faces; it is the default behavior of Struts-Faces to have the
same JSP name as the form action. This behavior works without a hitch when you have a single JSP page (such as
in the earlier Struts-Faces example). Listing 3 shows the original FlightSearch.jsp; let's go ahead and modify the
action as follows:

<s:form action="/listFlights.do>

Of course, this modification alone does not solve the problem. With this change you will find that the
STFRequestProcessor cannot find the ActionForm. Obviously more changes are required.

Before going ahead, though, look at Figure 5. It shows the relevant portions of the sequence of events in rendering

a faces response for a Struts-Faces form. This is same as in Figure 3 except for the highlighted method
createActionForm() in FormComponent. The FormComponent class provided by the Struts-Faces API
is a specialized subclass of javax.faces.component.UIForm and supports automatic creation of form
Beans in request or session scope.

Figure 5. Rendering Struts-Faces response
Click here to view the figure.

As you can see, the createActionForm() method uses the action name itself to get the ActionMapping
from the Struts configuration file. Because there is no ActionMapping for /listFlights.do, Struts cannot find the
ActionForm

The solution to this problem is to use org.apache.struts.util.RequestUtils. The static method
getActionMappingName() in RequestUtils is intelligent enough to resolve the path (/x/y/z) or suffix
(.do) mapping into appropriate ActionMapping.

Listing 12 shows the changes to the createActionForm method in boldface. Instead of doing these changes to
the FormComponent in Struts-Faces, we create a new STFFormComponent by subclassing the
FormComponent and overriding the createActionForm() method.

Listing 12. Modified createActionForm() method in FormComponent

// Look up the application module configuration information we need
ModuleConfig moduleConfig = lookupModuleConfig(context);

// Look up the ActionConfig we are processing
String action = getAction();
String mappingName = RequestUtils.getActionMappingName(action);
ActionConfig actionConfig = moduleConfig.findActionConfig(mappingName);
....
....

One more change is needed to the new STFFormComponent. Struts-Faces treats the action name itself as the
form name. This needs to change because the action has the .do suffix in it while the form name does not have the
.do suffix. So we add a new property called action to the STFFormComponent and override the
getAction() and setAction() methods.

FormRenderer changes
You have to make a similar modification as the one shown in Listing 10 to the encodeBegin method of
FormRenderer (the class that renders the Struts-Faces Form in HTML format).

Again, you do this by subclassing FormRenderer. In addition, you will also have to change the form action
written out to the HTML. Listing 13 details these changes in boldface:

Listing 13. FormRenderer changes

protected String action(FacesContext context, UIComponent component) {

 String treeId = context.getTree().getTreeId();
 StringBuffer sb = new StringBuffer
 (context.getExternalContext().getRequestContextPath());
 sb.append("/faces");

 // sb.append(treeId); -- This is old code, replaced with
 // the two lines below.

 STFFormComponent fComponent = (STFFormComponent) component;
 sb.append(fComponent.getAction());

 return (context.getExternalContext().encodeURL(sb.toString()));
}

Changes to the FormTag
As you already know, when the component and renderers change, the tag has to change, too. In this case, create a
new tag, STFFormTag, by subclassing from the FormTag in Struts-Faces. You don't have to change any of the
functionality, just override the getComponentType() and getRendererType() methods. Listing 14
shows the overridden methods from STFFormComponent:

Listing 14. FormTag changes

public String getComponentType()
{
 return ("STFFormComponent");
}

public String getRendererType()
{
 return ("STFFormRenderer");
}

Modifying the faces-config.xml file
Custom components and renderers have to be declared in the faces-config.xml file so that JSF framework can
instantiate and use them. We have created a new component, STFFormComponent, and a new renderer,
STFFormRenderer, so far.

Now we will add the declarations to the faces-config.xml file as demonstrated in Listing 15. The component-class
is the fully qualified class name for the component. The component-type refers to the name used in STFFormTag
(Listing 12) to identify the component. Renderers are discovered and interpreted in similar manner. Note that the
faces-config.xml file is present in the struts-faces.jar file. Remove the file from the struts-faces.jar file and put it
under the WEB-INF folder of the Web application and modify it.

Listing 15. Declaring custom component and renderers in faces-config.xml

<faces-config>

 <!-- Custom Components -->
 <component>
 <component-type>STFFormComponent</component-type>
 <component-class>
 foobar.stf.component.STFFormComponent
 </component-class>
 </component>
 ..
 ..
 ..
 <!-- Custom Renderers -->
 <render-kit>

 <renderer>
 <renderer-type>STFFormRenderer</renderer-type>
 <renderer-class>
 foobar.stf.renderer.STFFormRenderer
 </renderer-class>
 </renderer>
 ..
 ..
 ..
 </render-kit>
</faces-config>

Modifying the struts-faces.tld file
You will not find the struts-faces.tld file in the sample Struts-Faces application; it is packaged along with the
struts-faces.jar file. Open and examine it. It declares a class called
org.apache.struts.faces.taglib.LifecycleListener, which implements
ServletContextListener and initializes the FacesRequestProcessor.

Because you want to use the new STFRequestProccessor, you have to remove the file from the
struts-faces.jar file, put it under the WEB-INF folder of the Web application, and delete the listener declaration. If
you leave the tld file as is, then a FacesRequestProcessor will be instantiated in addition to the
STFRequestProcessor when the Web application is initialized.

Modifying the base href tag
By now, you are past most of the hurdles in Struts, Tiles, JSF integration. You will even be able to navigate to the
Flight Search page and enter your criteria and view the list of flights. Now try navigating back to the Flight Search
Form from the Flight List page. You will get an HTTP 400 error. The reason for this error is the HTML base
href tag. It is set to the Master Layout page.

<base href=
 "http://localhost:8080/stf-example/faces/layout/MasterLayout.jsp" />
 |_________| |_____________________|
 Context Servlet Path

All page navigations are being calculated relative to the layout page. It would be convenient if the base href
tag included only up to the Web application context, like so:

<base href="http://localhost:8080/stf-example/" />

We can achieve this by customizing the Struts-Faces BaseTag. The changes in this class are pretty trivial. You
just have to get rid of including the HttpServletRequest.getServletPath() in the base href.

Because these changes are display-related, a new renderer called STFBaseRenderer is created for it. The new
tag is called STFBaseTag which declares STFBaseRenderer as its associated renderer. There is no need for a
new Component.

With this information, the new STFBaseTag is created by subclassing the BaseTag and overriding the
getRendererType method, as follows:

public String getRendererType()
{
 return ("STFBaseRenderer");
}

The changes so far
Congratulations! With these relatively minor modifications, you have successfully integrated Struts, Tiles, and JSF
and saved any previous investment you might have made in these technologies. This article has demonstrated how
to bring the front-end power of JSF, the content-formatting strengths of Tiles, and the flexibility of the Struts
controller tier, together in one package to make crafting J2EE Web applications an easier task.

We've covered the customization of Struts classes to enable a tightly integrated working relationship with both
JavaServer Faces and the Tiles framework, including such modifications and additions as:

New ViewHandler to check for committed responses●

New ServletContextListener to create a new Lifecycle implementation and register the custom
ViewHandler

●

A new RequestProcessor to handle Tiles requests●

A modified web.xml file that declares the new ServletContextListener and the JSF Lifecycle ID●

New FormTag, FormComponent and FormRenderer classes●

New BaseTag and BaseRenderer classes●

A modified faces-config.xml file that declares the new component and renderer●

A modified struts-faces.tld file without the listener declaration●

Hopefully, we've provided an overview of the component technologies used in this article, and more importantly,
we've offered a cogent roadmap for you to combine Struts, Tiles, and JavaServer Faces into a powerful, flexible
mechanism for building Web applications.

Resources

Download the examples and code from this article and follow the instructions for build and deployment in
README.txt.

●

ftp://www6.software.ibm.com/software/developer/library/j-integrate.zip

Ant is used to build the examples; you can download it from the Apache Ant Project Web site.●

For more about Struts and Tiles, including downloadable tutorials, documentation, binaries, and source
code, try the Apache Jakarta Project Struts Web site.

●

You can download the JSF Early Acess Release 4 (EA4) -- it comes with its own version of Tomcat -- as
part of the Java Web Services Developer Pack Version 1.2.

●

You can download version 0.3 or 0.4 of the Struts-Faces integration library from the Jakarta site.●

You can download JSF-RI in the Java Web Services Developer Pack 1.2.●

"Struts, an open-source MVC implementation" (developerWorks, February 2001) introduces Struts, a
Model-View-Controller implementation that uses servlets and JavaServer Pages technology.

●

"Struts and Tiles aid component-based development" (developerWorks, June 2002) explains why the Struts
and Tiles combination is a terrific package of tools for creating Web applications and shows you how to get
started using it, with a focus on changes since Struts 0.9.

●

"Struttin' your stuff with WebSphere Studio Application Developer, Part 2: Tiles" (developerWorks,
November 2002) is a tutorial that focuses on the use of the Tiles templating framework in conjunction with
Struts using the WebSphere Studio Application Developer as the development environment.

●

"Architect Struts applications for Web services" (developerWorks, April 2003) shows you how to build
Web services applications based on the MVC design pattern using Struts.

●

"A JSTL primer" (developerWorks, February-May 2003), a four-part series, offers all you ever wanted to
know about JSTL, including how to use JSTL tags to avoid using scripting elements in your JSP pages, how
to simplify software maintenance by removing source code from the presentation layer, and JSTL's
simplified expression language, which allows dynamic attribute values to be specified for JSTL actions
without having to use a full-blown programming language.

●

Learn the basics for developing Web applications using JSF. In his tutorial, "UI development with
JavaServer Faces" (developerWorks, September 2003), Jackwind Li Guojie explores the JSF life cycle,
input validation, event handling, page navigation, and internationalization.

●

Sun's JSF Web site is another good place to start to learn about JavaServer Faces technology.●

The ServerSide.com J2EE community is the ideal place to locate resources and participate in developer
forums having to do with J2EE.

●

The Java Community Process site is the place to go to get up to speed on the JavaServer Pages 1.2
specifications.

●

You'll find hundreds of articles about every aspect of Java programming in the developerWorks Java
technology zone.

●

http://ant.apache.org/
http://jakarta.apache.org/struts
http://java.sun.com/webservices/webservicespack.html
http://jakarta.apache.org/builds/jakarta-struts/release/struts-faces/
http://java.sun.com/webservices/download.html
http://www-106.ibm.com/developerworks/ibm/library/j-struts/
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jsf-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jsf-i.html
http://java.sun.com/j2ee/javaserverfaces
http://www.theserverside.com/home/index.jsp
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/

About the authors
Srikanth Shenoy specializes in the architecture, design, development, and deployment of large J2EE
and EAI projects. He has helped clients in the manufacturing, logistics, and financial sectors to realize
the Java's "write once, run anywhere" dream. He is a Sun Certified Enterprise Architect and co-author
of the upcoming book Practical Guide to J2EE Web Projects. You can reach him at
srikanth@srikanth.org.

Nithin Mallya specializes in providing enterprise solutions for financial clients. He has seven years of
experience in architecting and developing server-side solutions, mostly for the Java platform. He is a
Sun Certified Enterprise Architect and a Sun Certified Web Component Developer. He is a co-author
of the upcoming book Practical Guide to J2EE Web Projects. You can reach him at
nithin@mallya.org.

What do you think of this document?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

IBM developerWorks > Java technology

 About IBM | Privacy | Legal | Contact

mailto:srikanth@srikanth.org
mailto:nithin@mallya.org
ftp://www6.software.ibm.com/software/developer/library/j-integrate.zip
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

Search
for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : Java technology

Integrating Struts, Tiles, and JavaServer Faces:
The major players

A quick look at Struts, Tiles, and JavaServer Faces

Return to article.

Struts: A framework for developing Web applications using JSP technology (and
part of the open source Jakarta project), Struts provides a flexible control layer
based on standard technologies (such as Servlets, JavaBeans, XML, as well as
various Jakarta Commons packages) and an application-architecture design based
on the Model 2 approach, a variation of the Model-View-Controller (MVC) design.
It provides its own Controller component and integrates with other technologies to
deliver the Model and View components. Struts tags help to associate Bean
properties with form fields, reducing the complexity of writing forms that
remember the sum of user choices between requests.

Tiles: A framework that allows users to provide a consistent user interface, to
display portlet-like rectangles of content within a larger page of content, and to
download and process just one section of the image at a time, decreasing bandwidth
needs. Through a central XML file that defines screens and a set of tags that can be
embedded in JSP pages for the insertion of dynamic/static content, Tiles lets users
build componentized views and assemble them as they choose.

JavaServer Faces: JSF technology makes it easier to build Web applications by
letting users more easily assemble reusable UI components in a page, connect these
components to an application data source, and wire client-generated events to
server-side event handlers. JSF includes a set of APIs for representing UI
components and managing their state, handling events and input validation,
defining page navigation, and supporting internationalization and accessibility. It
also includes a JSP custom tag library for expressing a JavaServer Faces interface
within a JSP page. Learn more about JSF in the tutorial "UI development with
JavaServer Faces" (see Resources).

Return to article.

IBM developerWorks : Java technology

 About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/library/j-integrate/index.html
http://www-106.ibm.com/developerworks/library/j-integrate/index.html#resources
http://www-106.ibm.com/developerworks/library/j-integrate/index.html
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

Search
for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : Java technology

Integrating Struts, Tiles, and JavaServer Faces:
Figure 2. Processing a JSF request

Return to article.

Figure 2. Processing a JSF request

Return to article.

IBM developerWorks : Java technology

 About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/library/j-integrate/index.html
http://www-106.ibm.com/developerworks/library/j-integrate/index.html
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

Search
for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : Java technology

Integrating Struts, Tiles, and JavaServer Faces:
Figure 3. Rendering a faces response

Return to article.

Figure 3. Rendering a faces response

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/library/j-integrate/index.html

Return to article.

IBM developerWorks : Java technology

 About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/library/j-integrate/index.html
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

Search
for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : Java technology

Integrating Struts, Tiles, and JavaServer Faces:
Figure 4. Struts-Faces class diagram

Return to article.

Figure 4. Struts-Faces class diagram

Return to article.

IBM developerWorks : Java technology

 About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/library/j-integrate/index.html
http://www-106.ibm.com/developerworks/library/j-integrate/index.html
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

Search
for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : Java technology

Integrating Struts, Tiles, and JavaServer Faces:
Figure 5. Rendering Struts-Faces response

Return to article.

Figure 5. Rendering Struts-Faces response

Return to article.

IBM developerWorks : Java technology

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/library/j-integrate/index.html
http://www-106.ibm.com/developerworks/library/j-integrate/index.html
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/

 About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

developerWorks : Java technology

Search for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

Select country / region

Tools and products

Code and components

Projects

Education and events

Articles and columns

Forums

Standards

Special offers

News

Related links

Grid computing

Linux

Open source projects

Security

Web architecture

Web services

Wireless technology

XML

IBM developer solutions

DB2

eServer

Lotus

Rational

Tivoli

WebSphere

Toolbox subscription

Benefits of joining

Technical resources and support

Products and technologies

JXTA 2
Building on his JXTA series Making P2P interoperable, Sing Li brings you up to date on the platform's major changes
as it evolves and adapts to real-world topologies. (Articles)

Navigate the JNDI maze: Write client code that successfully finds its way to an EJB component published in a JNDI namespace.
(Articles)

Scheduling recurring tasks: Learn how to build a simple, general scheduling framework for task execution conforming to an
arbitrarily complex schedule. (Articles)

Java certification success, Part 1: SCJP: This tutorial prepares you for the Sun Certified Java Programmer (SCJP) 1.4 exam,
providing a detailed overview of the exam's main objectives and practice exercises to test your knowledge. (Education)

A practical introduction to TriActive JDO: Learn how TJDO helps you to transparently persist data regardless of the underlying
data store. (Articles)

Lock down J2ME applications with Kerberos: Get in on a three-part series that shows you how to secure data with the industry
standard, Kerberos. (Articles)

Specifications: Service Data Objects, WorkManager, and Timers: IBM and BEA are collaborating on specifications for
programming models and APIs for Java 2 Enterprise Edition (J2EE) application servers that provide programmers with simpler and
more powerful ways of building portable server applications.

EclipseCon 2004 - The Premiere Conference on Open Tools Development and Integration: See the breadth of Eclipse activity
and interact with others in the community and the open source project. Mark your calendar for EclipseCon, February 2-5, 2004 in
Anaheim, CA.

Write JMS programs using WebSphere: Willy Farrell has updated his popular article on how to develop JMS programs with
WebSphere MQ V5.3 and WebSphere Studio Application Developer V5. Be sure to see both Part 1 and Part 2.

Discussion forums

Join the discussion. Ask questions; get advice. Our Java programming experts keep these discussion forums on track. The forums now
include several new functions -- enjoy!

XML and Java technology: Want more on how these two technologies interact? XML/Java technology innovator Brett McLaughlin
is here to help.

Java security: Speak your mind on the Java security model. Security expert Paul Abbott is listening and can offer tips.

Java filter: Not sure where to ask your question? Moderator Joe Sam Shirah can help or point you in the right direction.

Client-side Java programming: developerWorks columnist John Zukowski answers your questions on topics like AWT, Swing,
Java 2D, and others.

Server-side Java programming: Programmer Govind Seshadri helps you resolve the tough challenges of server-side Java
programming.

Multithreaded Java programming: Do you need to understand the Java threading model? Brian Goetz can guide you through the
maze.

Columns

Eye on performance by Jack Shirazi and Kirk Pepperdine
Get a better understanding of stress testing and the factors that go into choosing the right tool. (See previous columns.)

J2EE pathfinder by Kyle Gabhart
New! Kyle Gabhart provides a short introduction to the J2EE Web application security architecture. (See previous columns.)

Java theory and practice by Brian Goetz
New! Learn how the 1.4.1 JVM handles garbage collection, including some of the new garbage collection options for
multiprocessor systems. (See previous columns.)

Magic with Merlin by John Zukowski
Merlin adds a subtle, but important change to JProgressBar, and John Zukowski shows you how to use it. (See previous
columns.)

Most popular links

IBM Developer Kits for AIX

Get started with
Java technology

Tutorials

IBM developer kits

CDs and downloads

Submit content

IBM Redbooks

developerWorks journal
IBM developers' store

 Subscribe to dW's FREE
 weekly newsletter:

Text HTML

News

Java tools organization pondered (InfoWorld)

Rivals BEA and IBM deliver new Java specs

(eWeek)

IBM updates Rational Rapid Developer 2003

(Advisor.com)

alphaWorks code

Download and develop with:

HeapRoots

MBeanInspector for WebSphere Application

Server

JAR Class Finder

Visual Application Builder

From IBM

Running your Java application on AIX, Part 2:

Gain a solid understanding of the JMM on AIX.

Running your Java application on AIX, Part 1:

Learn how the JIT compiler works and the
implications of using JNI on AIX.

A JSP ERP with DB2 Everyplace: A JSP

Enterprise Resource Planning example solution
implemented with IBM DB2 Everyplace.

LOBs in DB2 UDB: A real-world example for

using large object data types with DB2
Universal Database in your Java development.

Develop embedded and mobile Java apps

using UML: Achieve the highest levels of

software quality with UML.

Implementing an SQL EJB Wrapper as a Model

Helper using an Access Bean: A sample

implementation; also describes performance
implications.

Powered by WebSphere

http://www-106.ibm.com/developerworks/java/ 第 1 頁 / 共 2 2003/11/27 上午 11:07:41

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/country/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/views/java/code.jsp
http://www-106.ibm.com/developerworks/views/java/projects.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/articles.jsp
http://www-106.ibm.com/developerworks/forums/dw_jforums.jsp
http://www-106.ibm.com/developerworks/views/java/standards.jsp
http://www-106.ibm.com/developerworks/views/java/offers.jsp
http://www-106.ibm.com/developerworks/views/java/news.jsp
http://www-106.ibm.com/developerworks/views/java/community.jsp
http://www-106.ibm.com/developerworks/grid/
http://www-106.ibm.com/developerworks/linux/
http://www-124.ibm.com/developerworks/oss/
http://www-106.ibm.com/developerworks/security/
http://www-106.ibm.com/developerworks/web/
http://www-106.ibm.com/developerworks/webservices/
http://www-106.ibm.com/developerworks/wireless/
http://www-106.ibm.com/developerworks/xml/
http://www-106.ibm.com/developerworks/ibm/nav.html
http://www-106.ibm.com/developerworks/ibm/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7b.software.ibm.com/dmdd/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/eserver/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www.lotus.com/ldd&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-140.ibm.com
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/tivoli/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7b.software.ibm.com/wsdd/&origin=j
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www.developer.ibm.com/welcome/dw_join.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www.ibm.com/partnerworld/pwhome.nsf/weblook/trs_index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www.ibm.com/partnerworld/pwhome.nsf/weblook/pat_index.html&origin=j
http://www-106.ibm.com/developerworks/sitemap_62003.html
https://www-136.ibm.com/developerworks/secure/feedback.jsp?domain=developerworks
http://www-106.ibm.com/developerworks/myprofile.html
http://www-106.ibm.com/developerworks/java/library/j-jxta2/
http://www-106.ibm.com/developerworks/java/library/j-jxta2/
http://www-106.ibm.com/developerworks/java/library/j-namespace.html
http://www-106.ibm.com/developerworks/java/library/j-schedule.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://www.ibm.com/developerworks/java/library/j-tjdo/
http://www.ibm.com/developerworks/wireless/library/wi-kerberos/
http://www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/
http://www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/
http://www.eclipsecon.org/
http://www-106.ibm.com/developerworks/ibm/library/i-ad5mq53/
http://www-106.ibm.com/developerworks/ibm/library/i-ad5mq53-2/
http://www-106.ibm.com/developerworks/forums/dw_changes.jsp?cat=10
http://www-106.ibm.com/developerworks/forums/dw_forum.jsp?forum=262&cat=10
http://www-106.ibm.com/developerworks/forums/dw_forum.jsp?forum=178&cat=10
http://www-106.ibm.com/developerworks/forums/dw_forum.jsp?forum=177&cat=10
http://www-106.ibm.com/developerworks/forums/dw_forum.jsp?forum=171&cat=10
http://www-106.ibm.com/developerworks/forums/dw_forum.jsp?forum=244&cat=10
http://www-106.ibm.com/developerworks/forums/dw_forum.jsp?forum=176&cat=10
http://www-106.ibm.com/developerworks/java/library/j-perf10283/
http://www-106.ibm.com/developerworks/java/library/j-perf10283/
http://www-106.ibm.com/developerworks/views/java/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=performance%3A
http://www-106.ibm.com/developerworks/java/library/j-pj2ee9.html
http://www-106.ibm.com/developerworks/java/library/j-pj2ee9.html
http://www-106.ibm.com/developerworks/views/java/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=pathfinder%3A
http://www-106.ibm.com/developerworks/java/library/j-jtp11253/
http://www-106.ibm.com/developerworks/java/library/j-jtp11253/
http://www-106.ibm.com/developerworks/views/java/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=practice%3A
http://www-106.ibm.com/developerworks/java/library/j-mer10213/
http://www-106.ibm.com/developerworks/java/library/j-mer11183/
http://www-106.ibm.com/developerworks/views/java/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=merlin%3A
http://www-106.ibm.com/developerworks/views/java/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=merlin%3A
http://www-106.ibm.com/developerworks/java/jdk/aix/
http://www-106.ibm.com/developerworks/library/j-starthere.html
http://www-106.ibm.com/developerworks/library/j-starthere.html
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/java/jdk/index.html
http://www-106.ibm.com/developerworks/toolbox/
https://www-136.ibm.com/developerworks/secure/myideas.jsp?start=true&domain=developerworks
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://publib-b.boulder.ibm.com/cgi-bin/searchsite.cgi?query=java&origin=j
http://www-106.ibm.com/developerworks/journal/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-132.ibm.com/webapp/wcs/stores/servlet/TopCategoriesDisplay?storeId=34244%26catalogId=-840%26langId=-1&origin=j
http://www-106.ibm.com/developerworks/newsletter/
javascript:subscribe()
http://www-106.ibm.com/developerworks/newsletter/
http://www-3.ibm.com/software/info/ecatalog/
http://www.scs.carleton.ca/ice
http://www.infoworld.com/article/03/11/24/HNjavatools_1.html
http://www.eweek.com/article2/0,4149,1396631,00.asp
http://advisor.com/doc/13344
http://www.alphaworks.ibm.com/tech/heaproots
http://www.alphaworks.ibm.com/tech/mbeaninspector
http://www.alphaworks.ibm.com/tech/mbeaninspector
http://www.alphaworks.ibm.com/tech/jarclassfinder
http://www.alphaworks.ibm.com/tech/visualbuilder
http://www-106.ibm.com/developerworks/eserver/articles/JavaPart2.html
http://www-106.ibm.com/developerworks/eserver/articles/JavaPart1.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0310mayer/0310mayer.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0310bhogal/0310bhogal.html
http://www-140.ibm.com/developerworks/rational/library/805.html
http://www-140.ibm.com/developerworks/rational/library/805.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0308lau/0308lau.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0308lau/0308lau.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7b.boulder.ibm.com/wsdd/&origin=j

developerWorks : Java technology

Tutorial: UI development with JavaServer Faces

Working with the Echo Web framework, Part 1

Access USB devices from Java applications

Simplify enterprise Java authentication with single sign-on

Webinar: What is your code REALLY doing?

2003 November 20

 Webinar: What, When and How to Automate your Testing

2003 December 4

 About IBM | Privacy | Terms of use | Contact

http://www-106.ibm.com/developerworks/java/ 第 2 頁 / 共 2 2003/11/27 上午 11:07:41

http://www-106.ibm.com/developerworks/edu/j-dw-java-jsf-i.html
http://www-106.ibm.com/developerworks/java/library/j-echo1/
http://www-106.ibm.com/developerworks/java/library/j-usb/
http://www-106.ibm.com/developerworks/java/library/j-gss-sso/
http://www.rational.com/events/webinars/details.jsp?EVENTID=2934
http://www.rational.com/events/webinars/details.jsp?EVENTID=2967
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	Integrating Struts, Tiles, and JavaServer Faces
	developerWorks : Java technology : Integrating Struts, Tiles, and JavaServer Faces: The major players
	developerWorks : Java technology : Integrating Struts, Tiles, and JavaServer Faces: Figure 2. Processing a JSF request
	developerWorks : Java technology : Integrating Struts, Tiles, and JavaServer Faces: Figure 3. Rendering a faces response
	developerWorks : Java technology : Integrating Struts, Tiles, and JavaServer Faces: Figure 4. Struts-Faces class diagram
	developerWorks : Java technology : Integrating Struts, Tiles, and JavaServer Faces: Figure 5. Rendering Struts-Faces response
	developerWorks : Java technology

	FLCHKMGECLEHEFIPLCEMGDJIDJHDEEEP:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: Integrating Struts, Tiles, and JavaServer Faces
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

	LIGLAKILFFNABBCFFPPGFBLJBKMJJCKL:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	PIAGOIEMDDHCMLDEIMCBINDBLDPJFOCD:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	OAJNGDCPGOAHOGGKKIMFADCNLILJMIJI:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	FDCCDFGFHPKMFMFMCPGJEPIIKAOKEGELOH:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	PPGOIKABHOIJFAHNNNLFPMHDGKEOKOLA:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	MGPDGLCLGMPMPDJDDCHJEGGDKGNJJGBJ:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: 1
	f2: IBM_IBM_1A
	f3: /newsletter/subscription/confirm.html
	f4: /newsletter/subscription/error-fromaddress.html
	f5: /newsletter/subscription/error-other.html
	f6: 900008993
	f7: your e-mail
	f8: html

